a)Sa se stabileasca daca fractia : \( \frac{2000^{2001}+2001^{2000}}{2000^{2000}+2001^{2001}} \) este fractie subunitara sau supraunitara .
b)Sa se demonstreze ca fractia \( \frac{m^2n+mn}{p^2+p} \) , unde \( m, n, p \in N* \) nu este ireductibila .
Mai multe fractii
Moderators: Bogdan Posa, Laurian Filip
\( \mbox {Numitorul} >2001^{2001}=2001\cdot 2001^{2000}=2000\cdot 2001^{2000}+2001^{2000} \)
\( \mbox {Numaratorul}=2000^{2001}+2001^{2000}=2000\cdot 2000^{2000}+2001^{2000} \)
Acum e clar ca \( \underline{\overline{|\text {numitorul> numaratorul}|}} \).
\( \mbox {Numaratorul}=2000^{2001}+2001^{2000}=2000\cdot 2000^{2000}+2001^{2000} \)
Acum e clar ca \( \underline{\overline{|\text {numitorul> numaratorul}|}} \).
The important thing is not to stop questioning. Albert Einstein.