Mai multe fractii

Moderators: Bogdan Posa, Laurian Filip

Post Reply
alex2008
Leibniz
Posts: 464
Joined: Sun Oct 19, 2008 3:23 pm
Location: Tulcea

Mai multe fractii

Post by alex2008 »

a)Sa se stabileasca daca fractia : \( \frac{2000^{2001}+2001^{2000}}{2000^{2000}+2001^{2001}} \) este fractie subunitara sau supraunitara .

b)Sa se demonstreze ca fractia \( \frac{m^2n+mn}{p^2+p} \) , unde \( m, n, p \in N* \) nu este ireductibila .
User avatar
naruto
Pitagora
Posts: 55
Joined: Tue Oct 14, 2008 2:27 pm

Post by naruto »

b). Sus avem \( nm(m+1) \), care e nr par, fiindca \( m \) si \( m+1 \) sunt numere consecutive si produsul a doua numere consecutive este un numar par.

Jos avem \( p(p+1) \) care e tot par.

Fractia se simplifica prin 2.
User avatar
naruto
Pitagora
Posts: 55
Joined: Tue Oct 14, 2008 2:27 pm

Post by naruto »

La a):

\( 2001^{2001}=2001\cdot 2001^{2000}=2001^{2000}+2001^{2000}+.....+2001^{2000}\
\)
(de 2001 ori)

Numitorul e mult mai mare ca numaratorul => fractie subunitara.
The important thing is not to stop questioning. Albert Einstein.
alex2008
Leibniz
Posts: 464
Joined: Sun Oct 19, 2008 3:23 pm
Location: Tulcea

Post by alex2008 »

Nu e foarte clar ... :?: La numarator se intampla la fel doar ca 2000 e la puterea 2001 . Nu poti sa explici mai clar ca sa ma convingi ca intradevar stii ? :?
User avatar
naruto
Pitagora
Posts: 55
Joined: Tue Oct 14, 2008 2:27 pm

Post by naruto »

\( \mbox {Numitorul} >2001^{2001}=2001\cdot 2001^{2000}=2000\cdot 2001^{2000}+2001^{2000} \)
\( \mbox {Numaratorul}=2000^{2001}+2001^{2000}=2000\cdot 2000^{2000}+2001^{2000} \)

Acum e clar ca \( \underline{\overline{|\text {numitorul> numaratorul}|}} \).
The important thing is not to stop questioning. Albert Einstein.
Post Reply

Return to “Clasa a V-a”