In triunghiul \( ABC \), \( m(\angle A)=90^\circ \), \( [AD] \) este inaltime si \( M \in (AD) \). Sa se arate ca daca \( \angle MBA \equiv \angle MCA \) atunci \( AB=AC \).
Manuela Prajea, R.M.T. 4/2008
Punct de pe inaltimea corespunzatoare ipotenuzei
Moderators: Bogdan Posa, Laurian Filip
-
Claudiu Mindrila
- Fermat
- Posts: 520
- Joined: Mon Oct 01, 2007 2:25 pm
- Location: Targoviste
- Contact:
Punct de pe inaltimea corespunzatoare ipotenuzei
elev, clasa a X-a, C. N. "C-tin Carabella", Targoviste
-
Marius Mainea
- Gauss
- Posts: 1077
- Joined: Mon May 26, 2008 2:12 pm
- Location: Gaesti (Dambovita)
-
Claudiu Mindrila
- Fermat
- Posts: 520
- Joined: Mon Oct 01, 2007 2:25 pm
- Location: Targoviste
- Contact:
Solutia mea.
Fie \( { N} =BM \cap AC, {P}= MC \cap AB \).
Deoarece \( \angle MBA \equiv \angle MCA \Longrightarrow \angle PBN \equiv \angle PCN \), deci patrulaterul \( PNCB \) este inscriptibil, sau \( PN \) este antiparalela la \( BC \), deci \( \Delta ANP \sim \Delta ABC\Longrightarrow \frac{AN}{AB}=\frac{AP}{AC}.(1) \), deci \( AN=\frac{AP\cdot AB}{AC} \) si \( AP=\frac{AN \cdot AC}{AB} \)
Dar cu teorema lui Ceva, avem: \( \frac{AP}{PB}\cdot \frac{BD}{DC} \cdot \frac{CN}{NA}=1 \Longleftrightarrow \frac{AP}{PB} \cdot \frac{CN}{NA} \cdot \frac{AB^2}{AC^2}=1\Longleftrightarrow \frac{AN \cdot AC}{AB \cdot PB} \cdot \frac{CN \cdot AC}{AP \cdot AB}\cdot \frac{AB^2}{AC^2}=1\Longleftrightarrow \frac{AN}{PB}=\frac{AP}{CN}\Longleftrightarrow \frac{AN}{AP}=\frac{PB}{CN}.(*) \).
Apoi, \( \Delta ABN \sim \Delta ACP \Longleftrightarrow \frac{AN}{AP}=\frac{AB}{AC}(**) \).
Din \( (*) \) si \( (**) \) rezulta ca \( \frac{PB}{CN}=\frac{AB}{AC} \Longleftrightarrow \frac{PB}{AB}=\frac{CN}{AC} \), ceea ce in conformitate cu reciproca teoremei lui Thales inseamna \( PN \parallel BC \) si deci \( \angle ANP =\angle ABC \) si \( \angle ANP=\angle ACB \), deci \( \angle ABC=\angle ACB \Longleftrightarrow AB=AC \qed \)
Fie \( { N} =BM \cap AC, {P}= MC \cap AB \).
Deoarece \( \angle MBA \equiv \angle MCA \Longrightarrow \angle PBN \equiv \angle PCN \), deci patrulaterul \( PNCB \) este inscriptibil, sau \( PN \) este antiparalela la \( BC \), deci \( \Delta ANP \sim \Delta ABC\Longrightarrow \frac{AN}{AB}=\frac{AP}{AC}.(1) \), deci \( AN=\frac{AP\cdot AB}{AC} \) si \( AP=\frac{AN \cdot AC}{AB} \)
Dar cu teorema lui Ceva, avem: \( \frac{AP}{PB}\cdot \frac{BD}{DC} \cdot \frac{CN}{NA}=1 \Longleftrightarrow \frac{AP}{PB} \cdot \frac{CN}{NA} \cdot \frac{AB^2}{AC^2}=1\Longleftrightarrow \frac{AN \cdot AC}{AB \cdot PB} \cdot \frac{CN \cdot AC}{AP \cdot AB}\cdot \frac{AB^2}{AC^2}=1\Longleftrightarrow \frac{AN}{PB}=\frac{AP}{CN}\Longleftrightarrow \frac{AN}{AP}=\frac{PB}{CN}.(*) \).
Apoi, \( \Delta ABN \sim \Delta ACP \Longleftrightarrow \frac{AN}{AP}=\frac{AB}{AC}(**) \).
Din \( (*) \) si \( (**) \) rezulta ca \( \frac{PB}{CN}=\frac{AB}{AC} \Longleftrightarrow \frac{PB}{AB}=\frac{CN}{AC} \), ceea ce in conformitate cu reciproca teoremei lui Thales inseamna \( PN \parallel BC \) si deci \( \angle ANP =\angle ABC \) si \( \angle ANP=\angle ACB \), deci \( \angle ABC=\angle ACB \Longleftrightarrow AB=AC \qed \)
elev, clasa a X-a, C. N. "C-tin Carabella", Targoviste