Punct de pe inaltimea corespunzatoare ipotenuzei

Moderators: Bogdan Posa, Laurian Filip

Post Reply
Claudiu Mindrila
Fermat
Posts: 520
Joined: Mon Oct 01, 2007 2:25 pm
Location: Targoviste
Contact:

Punct de pe inaltimea corespunzatoare ipotenuzei

Post by Claudiu Mindrila »

In triunghiul \( ABC \), \( m(\angle A)=90^\circ \), \( [AD] \) este inaltime si \( M \in (AD) \). Sa se arate ca daca \( \angle MBA \equiv \angle MCA \) atunci \( AB=AC \).
Manuela Prajea, R.M.T. 4/2008
elev, clasa a X-a, C. N. "C-tin Carabella", Targoviste
Marius Mainea
Gauss
Posts: 1077
Joined: Mon May 26, 2008 2:12 pm
Location: Gaesti (Dambovita)

Post by Marius Mainea »

\( \frac{A[ABM]}{A[ACM]}=\frac{AB\cdot BM\cdot \sin{\angle{MBA}}}{AC\cdot CM\cdot \sin{\angle{MCA}}}=\frac{BD\cdot AM}{CD\cdot AM}=\frac{AB^2}{AC^2} \) si de aici

\( \frac{BD}{CD}=\frac{AB}{AC} \)

Apoi cu putine calcule rezulta ca BD=CD deci triunghiul ABC este isoscel.
Claudiu Mindrila
Fermat
Posts: 520
Joined: Mon Oct 01, 2007 2:25 pm
Location: Targoviste
Contact:

Post by Claudiu Mindrila »

Solutia mea.
Fie \( { N} =BM \cap AC, {P}= MC \cap AB \).
Deoarece \( \angle MBA \equiv \angle MCA \Longrightarrow \angle PBN \equiv \angle PCN \), deci patrulaterul \( PNCB \) este inscriptibil, sau \( PN \) este antiparalela la \( BC \), deci \( \Delta ANP \sim \Delta ABC\Longrightarrow \frac{AN}{AB}=\frac{AP}{AC}.(1) \), deci \( AN=\frac{AP\cdot AB}{AC} \) si \( AP=\frac{AN \cdot AC}{AB} \)

Dar cu teorema lui Ceva, avem: \( \frac{AP}{PB}\cdot \frac{BD}{DC} \cdot \frac{CN}{NA}=1 \Longleftrightarrow \frac{AP}{PB} \cdot \frac{CN}{NA} \cdot \frac{AB^2}{AC^2}=1\Longleftrightarrow \frac{AN \cdot AC}{AB \cdot PB} \cdot \frac{CN \cdot AC}{AP \cdot AB}\cdot \frac{AB^2}{AC^2}=1\Longleftrightarrow \frac{AN}{PB}=\frac{AP}{CN}\Longleftrightarrow \frac{AN}{AP}=\frac{PB}{CN}.(*) \).

Apoi, \( \Delta ABN \sim \Delta ACP \Longleftrightarrow \frac{AN}{AP}=\frac{AB}{AC}(**) \).
Din \( (*) \) si \( (**) \) rezulta ca \( \frac{PB}{CN}=\frac{AB}{AC} \Longleftrightarrow \frac{PB}{AB}=\frac{CN}{AC} \), ceea ce in conformitate cu reciproca teoremei lui Thales inseamna \( PN \parallel BC \) si deci \( \angle ANP =\angle ABC \) si \( \angle ANP=\angle ACB \), deci \( \angle ABC=\angle ACB \Longleftrightarrow AB=AC \qed \)
elev, clasa a X-a, C. N. "C-tin Carabella", Targoviste
Post Reply

Return to “Clasa a VII-a”