Ecuatie functionala!

Moderators: Filip Chindea, maky, Cosmin Pohoata

Post Reply
User avatar
maxim bogdan
Thales
Posts: 106
Joined: Tue Aug 19, 2008 1:56 pm
Location: Botosani

Ecuatie functionala!

Post by maxim bogdan »

Demonstrati ca nu exista nici o functie \( f:\mathbb{R}\to \mathbb{R} \) astfel incat:

\( \frac{f(x)+f(y)}{2}\geq f(\frac{x+y}{2})+|x-y| \)

pentru orice numere reale \( x \) si \( y. \)
Feuerbach
bae
Bernoulli
Posts: 234
Joined: Tue Oct 02, 2007 10:39 pm

Post by bae »

***
Last edited by bae on Sat Feb 13, 2010 1:39 pm, edited 1 time in total.
Marius Mainea
Gauss
Posts: 1077
Joined: Mon May 26, 2008 2:12 pm
Location: Gaesti (Dambovita)

Post by Marius Mainea »

Presupunem prin absurd ca exista o astfel de functie.

Se prin inductie dupa n ca \( \frac{f(x)+f(-x)}{2}\ge f(0)+2n|x| \) pentru orice x real si n natural nenul, ceea ce evident constituie o contradictie.
Post Reply

Return to “Algebra”