Demonstrati ca nu exista nici o functie \( f:\mathbb{R}\to \mathbb{R} \) astfel incat:
\( \frac{f(x)+f(y)}{2}\geq f(\frac{x+y}{2})+|x-y| \)
pentru orice numere reale \( x \) si \( y. \)
Ecuatie functionala!
Moderators: Filip Chindea, maky, Cosmin Pohoata
- maxim bogdan
- Thales
- Posts: 106
- Joined: Tue Aug 19, 2008 1:56 pm
- Location: Botosani
Ecuatie functionala!
Feuerbach
-
Marius Mainea
- Gauss
- Posts: 1077
- Joined: Mon May 26, 2008 2:12 pm
- Location: Gaesti (Dambovita)