Exista f:[0,1]->R care are primitive si e surjectiva

Moderators: Bogdan Posa, Beniamin Bogosel, Marius Dragoi

Post Reply
User avatar
Cezar Lupu
Site Admin
Posts: 612
Joined: Wed Sep 26, 2007 2:04 pm
Location: Bucuresti sau Constanta
Contact:

Exista f:[0,1]->R care are primitive si e surjectiva

Post by Cezar Lupu »

a) Aratati ca exista o functie \( f:[0,1]\to\mathbb{R} \) care admite primitive si este surjectiva.

b) Exista o functie \( g:[0,1]\to\mathbb{R} \) care admite primitive si este bijectiva?

"Vranceanu-Procopiu" 2007
An infinite number of mathematicians walk into a bar. The first one orders a beer. The second orders half a beer. The third, a quarter of a beer. The bartender says “You’re all idiots”, and pours two beers.
Laurentiu Tucaa
Thales
Posts: 145
Joined: Sun Mar 22, 2009 6:22 pm
Location: Pitesti

Post by Laurentiu Tucaa »

Pentru punctul a) nu sunt foarte sigur da cred ca functia definita prin \( f(x)=\frac{1}{x-a}\cdot\sin\frac{1}{x-a},x\in[0,a)\cap(a,1] ;f(a)=0 \) indeplineste conditiile chiar pt orice \( a\in(0,1) \).
andy crisan
Pitagora
Posts: 56
Joined: Sun Dec 28, 2008 5:50 pm
Location: Pitesti

Post by andy crisan »

Pentru b) evident nu exista caci daca o astfel de functie ar exista, cum \( f \) admite primitive inseamna ca \( f \) are proprietatea lui Darboux si cum este injectiva inseamna ca este continua deci duce intervale compacte in intervale compacte deci \( f \) nu este surjectiva.
Post Reply

Return to “Analiza matematica”