Search found 16 matches

by Razvan Balan
Sun Nov 23, 2008 7:06 pm
Forum: Analiza matematica
Topic: Proprietate pentru un sir crescator (a_n)
Replies: 1
Views: 510

Proprietate pentru un sir crescator (a_n)

Fie \( (a_n)_{n\geq1} \) un sir crescator de numere reale pozitive. Demonstrati ca
\( \lim_{n\to\infty}\sqrt[n]{a_1^n+a_2^n+...+a_n^n}=\lim_{n\to\infty}a_n \).
by Razvan Balan
Sat Nov 01, 2008 9:46 am
Forum: Analiza matematica
Topic: Studiati convergenta unui sir
Replies: 4
Views: 635

Studiati convergenta unui sir

Studiati convergenta sirului \( x_n=\sin n \), \( n\geq0 \)
by Razvan Balan
Fri Mar 14, 2008 11:22 am
Forum: Clasa a X-a
Topic: Doua inegalitati cu numere complexe
Replies: 1
Views: 583

1. \( (\sum_{j=1}^n z_j)(\sum_{j=1}^n \frac{1}{z_j})=(\sum_{j=1}^n z_j)(\sum_{j=1}^n \bar z_j )= | \sum_{j=1}^n z_j |^2 \) si atunci inegalitatea devine \( 0\leq|\sum_{j=1}^n z_j |^2 \leq n^2=(\sum_{j=1}^n |z_j|)^2 \) si se dovedeste a fi adevarata.
by Razvan Balan
Fri Mar 14, 2008 11:06 am
Forum: Clasa a X-a
Topic: Functie neinjectiva
Replies: 1
Views: 397

Functie neinjectiva

Exista functii injective \( f:R\to R \) astfel incat \( f(x^2)-f^2(x)\geq \frac{1}{4} \), oricare ar fi numarul real x?

Titu Andreescu
by Razvan Balan
Fri Mar 14, 2008 10:53 am
Forum: Clasa a X-a
Topic: Transformari geometrice
Replies: 0
Views: 410

Transformari geometrice

Problema 1 . Fie triunghiul A_1A_2A_3 iar P_0 un punct in plan. Fie A_s cu proprietatea ca A_s=A_{s-3} cu s\geq 4 . Fie (P_n)_{n\geq 0} definit astfel: P_{k+1}=R_{A_{k+1},\frac{2\pi}{3}} (P_k) . Demonstrati ca daca P_{1986}=P_0 , atunci triunghiul A_1A_2A_3 este echilateral. Problema 2 . Fie triung...
by Razvan Balan
Fri Mar 14, 2008 10:46 am
Forum: Clasa a X-a
Topic: Inegalitate
Replies: 2
Views: 512

Inegalitate

Demonstrati ca \( (1+a+ab)(1+b+bc)(1+c+ca)\leq (1+a+a^2)(1+b+b^2)(1+c+c^2) \) unde a,b,c sunt numere reale pozitive.
by Razvan Balan
Fri Mar 14, 2008 10:23 am
Forum: Clasa a X-a
Topic: O ecuatie functionala
Replies: 3
Views: 757

O ecuatie functionala

Sa se determine functiile \( f:R\to R \) neidentic nule astfel incat \( f(f(x)+y)=f(x^2-y)+4f(x)y \) oricare ar fi x si y reale.
by Razvan Balan
Fri Feb 29, 2008 4:28 pm
Forum: Clasa a X-a
Topic: Ecuatie exponentiala
Replies: 1
Views: 468

Ecuatie exponentiala

\( $9^x-5^x-4^x=2 \sqrt{2^x}$ \)
by Razvan Balan
Thu Feb 28, 2008 4:03 pm
Forum: Clasa a X-a
Topic: GM 1/1997
Replies: 2
Views: 625

GM 1/1997

Fie triunghiul ABC si un sistem de coordonate cu originea in centrul cercului circumscris triunghiului ABC. Daca \( $z_A,z_B,z_C$ \) sunt afixele triunghiului ABC sa se arate ca \( |z_A+z_B|+|z_B+z_C| + |z_C+z_A| \leq 3R \) unde R este raza cercului circumscris triunghiului ABC.
by Razvan Balan
Thu Feb 28, 2008 3:54 pm
Forum: Clasa a X-a
Topic: Doua inegalitati cu numere complexe
Replies: 1
Views: 583

Doua inegalitati cu numere complexe

1. Demonstrati ca 0 \leq (z_1+z_2+...+z_n)(\frac{1}{z_1}+\frac{1}{z_2}+...+\frac{1}{z_n}) \leq n^2 , unde |z_1|=|z_2|=...=|z_n|=1 Gh. Andrei 2. |z_0-z_1|^2+|z_0-z_2|^2+...+|z_0-z_n|^2 \leq |z-z_1|^2+ |z-z_2|^2+...+|z-z_n|^2, unde z_0=\frac{z_1+z_2+...+z_n}{2}, z,z_1,z_2,...,z_n \in\mathbb{C}, n \ge...
by Razvan Balan
Tue Feb 26, 2008 10:59 am
Forum: Clasa a X-a
Topic: Ecuatie exponentiala simpla
Replies: 1
Views: 515

\( $$\frac{9^x+36^x+32^x+32^x}{4}=24^x \geq \sqrt[4]{(9 \cdot 36 \cdot 32 \cdot 32)^x}=\sqrt[4]{(3^4 \cdot 2^{12})^x} = 24^x $$ \) de unde \( $9^x=36^x=32^x$ \) de unde \( $x=0$ \)
by Razvan Balan
Sun Feb 24, 2008 3:10 pm
Forum: Clasa a IX-a
Topic: Identitate cu partea intreaga
Replies: 2
Views: 673

o alta cale ar fi de a considera in plan punctele A(n,0),B(n,m),C(o,m). In interiorul dreptunghiului OABC se afla (m-1)(n-1) puncte de coordonate intregi. Deoarece (m,n)=1, pe diagonala OB nu se afla astfel de puncte. Sub diagonala se afla \frac{(m-1)(n-1)}{2} puncte de forma (k,h). Pentru k fixat e...
by Razvan Balan
Thu Feb 21, 2008 10:54 am
Forum: Clasa a IX-a
Topic: Geometrie cu vectori intr-un pentagon
Replies: 1
Views: 521

Problema iese imediat:
\( $\vec{H_4H_1}=\vec{OH_1}-\vec{OH_4} = \vec{OB} - \vec{OE}$ \) si \( $\vec{H_3H_2}=\vec{OH_2} - \vec{OH_3}=\vec{OB}-\vec{OE}=\vec{H_4H_1}$ \) si deci \( $H_1H_2H_3H_4$ \) este paralelogram.
by Razvan Balan
Thu Feb 21, 2008 10:31 am
Forum: Clasa a IX-a
Topic: Identitate cu partea intreaga
Replies: 2
Views: 673

Identitate cu partea intreaga

Daca m si n sunt numere naturale prime intre ele atunci \( [\frac{m}{n}]+[\frac{2m}{n}]+...+[\frac{(n-1)m}{n}]=\frac{1}{2}(m-1)(n-1). \)
by Razvan Balan
Thu Feb 21, 2008 10:29 am
Forum: Clasa a X-a
Topic: Ecuatie exponentiala simpla
Replies: 1
Views: 515

Ecuatie exponentiala simpla

Rezolvati ecuatia \( 9^x+36^x=4\cdot 24^x-2\cdot 32^x. \)
by Razvan Balan
Thu Feb 21, 2008 10:25 am
Forum: Clasa a X-a
Topic: Minimul unei expresii cu logaritmi
Replies: 1
Views: 610

Minimul unei expresii cu logaritmi

Fie \( $m,n,p$ \) naturale diferite de 0 cu \( a,b,c \in (0,1) \) sau in \( (0,\infty) \). Sa se afle minimul expresiei \( E=(log_ab)^m+(log_bc)^n+(log_ca)^p. \)

Go to advanced search